Introduction Selection bias Selection bias occurs when sampled data or subjects in a study have been selected in a way that is not representative of the population of interest. As a consequence, conclusions made about the analyzed sample may be difficult to generalize, as the observed effects could be biased towards the sample and do not necessarily extend well to the population that we intended to analyze.
Introduction The previous post demonstrates the use of pre-compiled Stan models in interactive R Shiny applications to avoid unnecessary Stan model (re-)compilation on application start-up. In this short follow-up post we go a step further and tackle the issue of tracking the Stan model sampling progress itself in a shiny-application.
Introduction The aim of this post is to provide a short step-by-step guide on writing interactive R Shiny-applications that include models written in Stan using rstan and rstantools. The remainder of this post assumes a small amount of working knowledge on writing models in Stan and usage of the package rstan to interface Stan from R.